
C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol

Catherine Meadows and Paul Syverson

Center for High Assurance Computer Systems

Naval Research Laboratory

Washington, DC 20375

USA

fmeadows,syversong@itd.nrl.navy.mil

Feb. 24, 1998

Abstract

Payment transactions in the SET (Secure Electronic Transaction) protocol are described. Require-

ments for SET are discussed and formally represented in a version of NPATRL (the NRL Protocol

Analyzer Temporal Requirements Language). NPATRL is language for expressing generic requirements,

heretofore applied to key distribution or key agreement protocols. Transaction vectors and other new

constructs added to NPATRL for reasoning about SET payment transactions are described along with

properties of their representation.

1 Introduction

The SET Protocol [5] is a protocol sponsored by major credit card companies and others that is intended

to provide a standard for safe, secure credit card transactions over the Internet. (`SET' stands for `Secure

Electronic Transaction'.) As such, it is intended to supply an electronic version of the paper system that

exists today. However, there are a number of risks connected with use of the Internet that do not arise in the

paper world, or at least are not considered as severe. These arise from the di�culty of identifying participants

in transactions and the di�culty of ensuring the private information sent over the Internet remains so. SET

is intended to reduce these risks by introducing cryptographic means to protect sensitive information such

as credit card numbers and to provide authentication of parties involved in a credit card transaction.

SET is a complex protocol. This has caused a certain amount of concern, since it is well known that even

simple cryptographic protocols can have subtle aws that can go undetected for a long time. This realization

that correct protocols are di�cult to write has led to an increasing amount of work in the application of

formal methods to the analysis of cryptographic protocols, with some notable successes. However, most

of this work has concentrated on key distribution protocols, which are intended to distribute keys among

parties for secure communication. A key distribution protocol is required to safeguard the secrecy of the

key and provide authentication of the key, that is, provide a secure binding between the key and the parties

1

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

that are intended to use the key to communicate. But protocols such as SET have much more complex

requirements than do key distribution protocols. A key distribution protocol provides authentication and

secrecy for an atomic object: the key. SET is intended to provide secrecy for the credit card number, which

may be considered an atomic object, but the entity authenticated is the credit card transaction itself, which

evolves over time. The issue is complicated further by the fact that not all components of the transaction

may be known to all parties, even after they have been established. For example, the credit card number,

which is an integral part of the transaction, may never be revealed to the merchant.

In this paper, we show how a requirements language developed for the NRL Protocol Analyzer, a formal

tool for the analysis of cryptographic protocols, can be used for specifying the security requirements of a

complex protocol such as SET. This is part of ongoing work on use of the NRL Protocol Analyzer for the

speci�cation and analysis of the SET protocol.

We have found that the exibility of our simple temporal language has allowed us to specify requirements for

the authentication of an evolving transaction without any major modi�cation to the language itself. This is

because the language is used to de�ne correctness simply in terms of what events must precede others. The

content of the events is left to the speci�cation writer, and in this case we have let them be the components

of the transaction.

The remainder of the paper is organized as followed. In Section 2 we describe the SET protocol. In Section 3

we describe the NRL Protocol Analyzer and its associated requirements language. In Section 4 we describe

our speci�cation of the SET requirements. In Section 5 we compare our work with others. Section 6 concludes

the paper.

2 The SET Protocol

A payment transaction in the SET protocol involves three parties: a customer, a merchant, and an application

payment gateway. The customer presents a purchase request to the merchant, which includes credit card

information and a proposed purchase amount. The purchase request is identi�ed with a transaction ID.

The merchant then passes the request along to the gateway, together with a request that a certain amount

(not necessarily equal to the purchase amount) be authorized. The gateway then checks the customer's

credit, authorizes a certain amount, and passes this information back to the merchant. The merchant passes

this information back to the customer. Either at the same time as the authorization request, or later, the

merchant presents a capture request to the gateway for the same transaction, requesting that a certain

amount of money be captured. The gateway approves a certain amount which may or may not be equal to

the amount requested. The merchant then passes this information back to the customer.

The authentication structure of the SET protocol is complex. Messages between merchant and gateway are

always authenticated using digital signatures, as are messages from the merchant to the customer. Digital

signatures for authentication for messages from customer to merchant are optional, although they may be

made mandatory by a particular application. However, it is in the authentication of forwarded messages

that the structure really becomes interesting. The message from customer to merchant includes information

that is needed by the gateway but may be hidden from the merchant, such as credit card number (PAN,

i.e., Primary Account Number) and expiration date. Also included, when customer digital signatures are

used, is a data item called the PANSecret, which is known only by the customer and gateway, but not the

merchant. This is not available when customer digital signatures are not used, since it is generated as part

2

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

of the certi�cate registration process. This information is protected by the use of a dual signature. Two

hash functions are computed, one over the the data to be kept hidden from the merchant, and the other

over the data to be revealed to it, which includes a hash over the purchase amount and order description

that the customer and merchant agreed to o�ine. The hidden data is encrypted using the gateway's public

key. The customer then computes a digital signature (if customer signatures are used) over the two hashes.

The signature, the two hashes, and the encrypted and unencrypted information are sent to the merchant.

The merchant veri�es the signature and forwards the information, including the signature if any, to the

gateway. When the gateway receives the message, it veri�es the signature, if any, and also veri�es the PAN

and PANSecret. Whether or not signatures are used, it also veri�es the PAN and and the customer's portion

of the PANSecret (if any) with the credit card issuer, although this may be done o�ine.

Authentication of gateway to customer via the merchant is much simpler: there is none. Any information

from the gateway that the merchant passes on to the customer is authenticated only by the merchant's

signature.

There are also a number of options available. A customer has the option of sending an initialization message

prior to its purchase request, which allows it to obtain more up-to-date certi�cates from the merchant, and

allows the merchant to send back a random challenge which it can use to verify the freshness of the customer's

subsequent purchase request. When an initialization message is sent, the transaction ID is jointly created

by customer and merchant. When no initialization message is sent, the customer may create the transaction

ID, or it may be jointly created by the customer and merchant. The gateway also has the option, depending

upon the policy followed, of sending the customer's PAN to the merchant (the PANSecret, however, is never

sent). There are also protocols for inquiring about the status of an order, cancelling an order, etc.

For the purposes of this paper, we will make some assumptions to simplify our discussion. We will assume

that authorization and capture are requested in the same message and granted in the same message. We

will ignore the optional protocols for inquiring about the status of an order, cancelling an order, and so on.

We will also assume that the customer alone generates the transaction ID when no initialization message

exists. This will allow us to assume that the customer knows the entire transaction ID when it sends the

purchase request, and so simplify our analysis. However, we will consider the customer options of signing or

not signing the purchase request message, and sending or not sending the initialization messages, as well as

the gateway option of sending or not sending the PAN to the merchant, since these are directly relevant to

the security of the central payment protocol. But we will assume that the gateway will not send a customer's

PAN to the merchant if it allows unsigned purchase requests on that PAN. This is to foil the obvious attack in

which the gateway sends the PAN to a dishonest merchant, and that merchant uses the PAN to impersonate

the customer in an unsigned purchase request.

3 The NRL Protocol Analyzer and its Requirements Language

3.1 The NRL Protocol Analyzer Model

In the NRL Protocol Analyzer (NPA), protocols are modeled in terms of communicating state machines.

Each state machine represents an \honest" participant of the protocol, that is one that obeys the rules of the

protocol. The state machines send messages across a network that is controlled by a hostile intruder that

can read all tra�c, modify tra�c, create messages, and normally perform all operations that are available

to a legitimate user of the system. The intruder is not itself modeled as a communicating state machine but

3

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

is identi�ed with the network|likewise all \dishonest" nodes that are assumed to be in cooperation with,

and thus identi�ed with, the intruder. In particular, any word that would be available to a dishonest node,

such as master keys belonging to that node, or random numbers generated by that node, are assumed to be

known by the intruder.

A state in the NRL Protocol Analyzer model consists of three things. The �rst is the set of local state

variable values of the honest nodes. The second is the set of words known by the intruder. These consist

of all messages that have been passed by legitimate parties, words created by the intruder's performing

operations on messages and words, and words that were initially known by the intruder. The third is the

sequence of state transitions that have occurred, where each state transition involves some combination of the

sending and receiving of messages (the intruder's operating on a set of words counts as its sending messages

to itself) and the assignment of values to local state variables.

NPA works by having the user specify an insecure state. The Analyzer works backwards from that state

and attempts to show that every path to it begins in an unreachable state. If it succeeds, then it has proved

that the path is unreachable, given the assumptions of the Analyzer model. If on the other hand it �nds

a path that begins in an initial state, it may have found an attack on the protocol. The Analyzer includes

inductive techniques for proving that in�nite classes of states are unreachable. These can be used to prove

lemmas about unreachability of in�nite classes of states that can be used to assist the Analyzer in its search.

The NRL Protocol Analyzer makes very simple assumptions about the strengths of the crypto-algorithms

involved. Cryptographic algorithms are modeled as operations which may obey certain algebraic properties,

such as the fact that encryption and decryption with the same key cancel each other out. However, more

subtle properties of cryptographic algorithms are usually not modeled, and notions relying on probability

theory or complexity theory, such as polynomial indistinguishability, are completely beyond it. Thus, the

assurance it gives is based on fairly strong assumptions about the cryptographic algorithms used. However,

since many protocol failures have been shown to arise even when the cryptographic algorithms used behave

perfectly, it remains a valuable tool for reasoning about security at the protocol level.

3.2 NPATRL (The NRL Protocol Analyzer Temporal Requirements Language)

Our language, NPATRL (pronounced N-patrol) contains a denumerable collection of constant singular terms,

typically represented by letters from the beginning of the alphabet. We also have a denumerable collection

of variable terms, typically represented by letters from the end of the alphabet. We also have, for each n � 1,

n-ary function letters taking terms of either type as arguments and allowing us to build up functional terms

in the usual recursive fashion. (We will always indicate whether a term is constant or variable if there is any

potential for confusion.) We have a denumerable collection of n-ary action symbols for each arity n � 1.

These will be written as words in typewriter script (e.g., accept). The �rst argument of an action symbol is

reserved for a term representing the agent of the action in question. An atomic formula consists of an n-ary

action symbol, e.g., `act' followed by an n-tuple of terms. We have the usual logical connectives: :, ^ , _,

!, and $, and also one temporal operator: 3- , which stands for \happened previously". Complex formulae

are built up from atomic formulae in the usual recursive fashion. (Note that this is only a formal language,

not a logic; hence there are no axioms or inference rules.) We also include quanti�ers. Earlier version of

NPATRL did not use them, but we have found that the introduction of projections which could be de�ned

over a number of possible vectors necessitated their use for the SET requirements speci�cation, and so we

now include them in the language.

4

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

In general, an action symbol will be of the following form. It will have four arguments, the �rst representing

the agent of the action in question, the second representing the other principals involved in the action, the

third representing the words involved in the action, and the fourth representing the local round number of

the agent of the action, where a round number local to a principal identi�es all actions pertaining to a single

session as far as that principal is concerned. Action symbols can describe such events as a principal sending

a message, the learning of a word by the intruder, or a principal's making a change to one or more of its

local state variables. An action symbol may map to more than one event, and for a given event, there may

be more than one action symbol mapping to it. Requirements are stated in terms of conditions on traces

of action symbols. For example, we may require that an event indicated by an action symbol can only take

place if some event indicated by another action symbol has taken place previously.

For example, suppose that we wish to require that a party A accept a key as good for a session with another

party B only if that key was sent by a key server. This would be done as follows:

accept(principal (A; [honest]); principal (B; [X]); [KEY]; N?)

!3- send(server (S); (principal (A; [honest]); principal (B; [X])); [KEY]; N?)

Note that the N? is a `wild-card' symbol. Thus, when N? is used in more than one place, it does not

necessarily meant that the two round numbers are the same. Instead, it means that we do not care what

the round numbers are.

There are several types of action symbols that we use: these are receive, accept, send, request, learn,

and compromise. A receive event is one in which a party receives a message. An accept event is one in

which a party accepts a message as genuine. A send event is one in which a party sets in motion a chain of

events in which a message will be sent to another party. A learn event in one in which the intruder learns

a word. A compromise event is an event in which a secret such as a session key is compromised and made

available to the intruder.

The interpretation of receive, learn, and compromise events are straightforward. However, the interpre-

tation of accept and send events is deliberately left up to the protocol speci�er. This is because what the

protocol speci�er is trying to determine is whether or not what he or she thinks of as adequate send and

accept events are actually the ones that are necessary to make the protocol function properly. Thus, for

example, the send event

send(server (S); (principal (A; [honest]); principal (B; [X])); [KEY]; N?)

could describe the server sending a key to A who will then forward it to B, the server sending a key to A

and B simultaneously, or even the server sending the key to some fourth party who will then forward it to

A and B. The point is that, whatever interpretation is used, in each case the server has set into motion a

chain of events by which A and B are supposed to receive the key.

Of course, since the Analyzer reasons about the unreachability of insecure states, it does not use the re-

quirements language directly. Instead, it is necessary to de�ne insecure states in terms of negations of the

requirements. The Analyzer can then be used to reason about the unreachability of these insecure states.

Details of how this is done are given in [8]. A briefer, earlier description of the language and its application

is given in [6], and an analysis of protocols for repeated authentication using NPATRL and NPA is given

5

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

in [7]. NPATRL is a fairly exible language. This is reected by the fact that all of the constructs set

out below are application details speci�ed in NPATRL. We have, however, found it necessary to make one

addition to NPATRL itself. Previous applications have not required the use of quanti�ers, but they appear

to be unavoidable in this context. Nonetheless, the requirements that make use of them seem to be normally

amenable to NPA analysis, and we will not here discuss any details of adding quanti�ers to the language.

4 SET Requirements Speci�cation

Having described the basic ideas behind payment transactions in SET and the language NPATRL, we now

present a formal speci�cation of requirements for SET in NPATRL. The chief problem faced in developing

formal requirements for SET is the complex nature of the construct that is being veri�ed by the three

parties. We thus begin with a presentation and discussion of the constructs that we develop to allow the

representation of SET requirements in NPATRL, before proceeding to the requirements themselves.

4.1 Constructs Used

Most work on developing formal requirements for cryptographic protocols has concentrated on key distribu-

tion and agreement protocols, in which the construct being agreed upon, the key, is an atomic object that is

visible to all parties. The transaction agreed upon in the SET protocol is much more elaborate. It contains

a number of components that are added as the protocol progresses. Thus, the transaction agreed upon by

merchant and customer in the �rst part of the protocol will not be the same as the one agreed upon by

merchant, customer, and payment gateway at the end. Things are made even more di�cult by the fact that

some components of a transaction may be hidden from one of the parties. For example, both the customer

and payment gateway have access to the customer's credit cared number (PAN), but this may be hidden

from the merchant. Thus we need to be able to specify an evolving construct, some parts of which may be

hidden from the parties involved.

Our solution is to model a transaction as a vector. We de�ne a set of projection functions that give each

party's view of a transaction at each point in the protocol. Note that this use of projection functions de�ned

in terms of both the relevant party and that party's place in the protocol allow us to model both that party's

ignorance of terms that have not yet been generated and its ignorance of terms that it is not supposed to

know.

We de�ne our projection functions and related notions as follows.

De�nition: Let V be the set of n-vectors over C [f?g, where C is some alphabet, and let W be the set of

n-vectors over C. If V 2 V , we de�ne the support of V to be the set of all i between 1 and n such that V [i]

is not ?. We say that V agrees with V 0 (written V � V 0) if they agree on their common support, i.e., if for

all i 2 support(V) \ support(V 0), V [i] = V 0[i]. A projection, proj, is a function mapping W to V such that

there exists a set X such that i 2 X implies that proj(V)[i] = V [i] and i =2 X implies that proj(V)[i] = ?.

In such a case we say X = support(proj).

We note that the agrees relation is not necessarily transitive. However, the following lemma does hold. We

leave its proof as an exercise to the reader:

Lemma 1: Suppose that support(proj1) � support(proj2), and thatW is as in the above de�nition. Then, for

all V , V 0, and V 00 in W , if proj3(V
00) � proj2(V

0), and proj2(V
0) � proj1(V), then proj3(V

00) � proj1(V).

6

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

The following lemma also helps us to simplify our requirements in some cases:

Lemma 2: Suppose that support(proj1) � support(proj2), and that W is as in the above de�nition. Then,

for all V , V 0, and V 00 in W , proj1(V
0) � proj2(V) if and only if proj1(V) = proj1(V

0).

Lemma 2 will allow us to replace proj1(V
0) with proj1(V) in any requirement involving proj1(V

0) where

proj1(V
0) � proj2(V) and support(proj1) � support(proj2).

We de�ne the transaction vector as follows. Let V be a transaction vector. Its components are de�ned by:

� V [1a] = Portion of the Transaction ID generated by customer

� V [1b] = Portion of the Transaction ID generated by merchant

� V [2] = customer

� V [3] = hash of order data

� V [4] = customer's PAN

� V [5] = customer's PANSecret

� V [6] = purchase amount

� V [7] = merchant

� V [8] = authorized purchase amount

� V [9] = capture amount

� V [10] = authorized capture amount

� V [11] = signed or unsigned

Some comments:

1. We will assume that V [1b] is zero if no initialization message is sent, and that V [5] is zero if no

PANSecret in used.

2. The hash in V [3] is taken over the purchase amount and the order description that was agreed to by

the customer and merchant o�ine. The order description may or may not be sent to the gateway, but

the hash always is sent, and can be used by the gateway to verify that the customer and merchant

agreed on the same order description.

3. The value signed or unsigned does not actually appear in the SET protocol. It refers to whether or not

the customer's purchase request was signed with a digital signature or not. Since the type of security

that may be guaranteed will be di�erent in each case, it is important that this be accounted for.

The projections for honest principals are constructed as follows. We �rst give projections describing the

knowledge that each principal has. This information will be used in `accept' actions.

7

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

1. cust req(V) = [1a; 1b; 2; 3; 4; 5; 6; 7;?;?;?; 11]

(information known by customer when it sends purchase request)

2. merch req(V) = [1a; 1b; 2; 3;?;?; 6; 7;?; 9;?; 11]

(information known by merchant when it sends request to bank)

3. apg resp(V) = [1a; 1b; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11]

(information known by bank when it accepts a merchant's authorization request)

4. merch resp(V) = [1a; 1b; 2; 3;?;?; 6; 7; 8; 9; 10; 11]

(information known by merchant when it accepts a customer's purchase request)

(in some cases merch resp(V) = [1a; 1b; 2; 3; 4;?; 6; 7; 8; 9; 10; 11])

5. cust accept(V) = [1a; 1b; 2; 3; 4; 5; 6; 7; 8;?; 10; 11]

(information known by customer when it accepts a transaction)

We next give projections describing the information that each honest principal sends, to be used in `send'

actions. Note that a single party's send projections are not monotonically increasing, as in the case of the

accept actions, since once a data item is sent it may not be sent again. Note also that we do not de�ne a

projection for the merchant's response to the initialization request. That is because the merchant's response

does not appear in our requirements.

1. cust pinitsend (V) = [1a;?; 2;?;?;?;?; 7;?;?;?;?]

(information sent by customer in initialization request to merchant)

2. cust reqsend(V) = [1a; 1b; 2; 3; 4; 5; 6; 7;?;?;?; 11]

(information sent by customer in purchase request to merchant)

3. merch reqsend(V) = [1a; 1b; 2; 3;?;?; 6; 7;?; 9;?; 11]

(information sent by merchant in authorization request to bank)

4. apg respsend(V) = [1a; 1b; 2;?;?;?;?; 7; 8; 9; 10;?]

(information sent by bank to merchant in response to authorization request)

(in some cases apg respsend(V) = [1a; 1b; 2;?; 4;?;?; 7; 8; 9; 10;?])

5. merch respsend(V) = [1a; 1b; 2;?;?;?;?; 7; 8;?; 10;?]

(information sent by merchant to customer in response to purchase order)

A table summarizing the content of all these projections is given in Figure 1.

We now consider how to map transaction vectors to the NRL Protocol Analyzer model. In the case of honest

participants, components of accept transaction vectors can be represented by values of local state variables.

Thus, when a customer requests a purchase amount, that will be stored in a local state variable representing

cust req(V)[7], and so forth. Components of send transaction vectors can be represented by components of

messages.

In the case of dishonest participants, projections can no longer represent beliefs, since beliefs of dishonest

participants are not represented in the NPA model. However, dishonest participants do send messages, and

8

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

we can determine what the appropriate values of the send projections should be from messages received by

honest participants. For example, let X be the result of encrypting a customer P 's PAN, PAN P , with the

gateway's public key. If an honest merchant receives the message X attributed to dishonest customer P , we

can conclude that the value of cust reqsend(V)[4] = PAN P , whether or not PAN P is P 's actual PAN.

4.2 SET Payment Protocol Requirements

We are now ready to begin with the actual requirements. In each case, we give an informal account, followed

by the NPATRL speci�cation.

Replay Requirements We have a general requirement that no projection of a transaction (for the same

role) should be accepted twice. We must be careful, though, to exclude from this requirement any �elds

that the principal generated itself when accepting that transaction. Thus, we phrase our requirement as

follows: If an honest principal accepts a projection proj1(V), such that proj2(V
0) � proj1(V) for some other

projection proj2, where proj1 and proj2 are from the set of projections de�ned in section 4.1, then no other

principal in the same role previously accepted any proj1(V
00) such that proj1(V

00) � proj2(V
0).

(accept(role(P; [honest]);�; proj
1
(V); N?) ^ (proj

1
(V) � proj

2
(V0)))

! ((proj1(V
00) � proj2(V

0))! :3- accept(role(Q; [honest]);�; proj1(V
00); N?)))

This is a fairly simple requirement. But, as in the rest of SET, nothing is ever quite this simple. This is so in

the case of merch req(V), if the optional customer initialization message is used. In that case, the merchant

sends a random challenge in response. The presence of this challenge, together with the customer's digital

signature, protects the merchant against replay of the purchase request message. If these features are not

present, the merchant can be protected against replay by the gateway's checking against the forwarded cus-

tomer request against its database, but the merchant itself apparently does not check for the freshness of its

data directly. Our requirement thus becomes: if the merchant acceptsmerch resp(V), and previously the cus-

tomer sent cust pinitsend(V 0), where merch resp(V) � cust pinitsend(V 0) and merch resp(V)[11] = signed ,

then the merchant did not previously accept merch resp(V 00), where merch resp(V 00) = merchresp(V).

(accept(merchant(Q; [honest]); customer(P; [X]);merch resp(V); N?) ^

3- send(customer(P; [X]);merchant(Q; [honest]); cust pinitsend (V0); N?) ^

merch resp(V) � cust pinitsend(V 0) ^ merch resp(V)[11] = signed)

! (merch resp(V 00) = merch resp(V)

! :3- accept(merchant(Q; [honest]); customer(P; [X]);merch resp(V00); N?))

Faithful Protocol Execution This requirement states that honest principals will faithfully execute the

protocol. Thus, if a send event occurs, then the corresponding accept event occurred previously. In other

words, if an honest principal P , playing a given role, engages in the send event role eventsend(V), then

it should have previously engaged in a corresponding accept event role event(V 0), where role event(V 0) �

role eventsend(V).

9

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

send(role(P; [honest]);�; role eventsend(V); N)

! 9V 0((role eventsend(V) � role event(V 0)) ^

3- accept(role(P; [honest]);�; role event(V0); N))

Customer Requirements The customer's main requirement is that he be given a guarantee that he will

receive the goods in return for his money, or if he has already received the goods, that he be given noti�cation

that the merchant agrees that the bank has agreed to pay for the goods, that is, that the customer has

obtained the goods legally. In other words, if the customer accepts cust accept(V), then there should exist

a V 0 such that merch respsend(V 0) � cust accept(V) and the merchant sent merch respsend(V 0). However,

Lemma 2 and the fact that merch respsend(V 0) � cust accept(V) allow to simplify this to the requirement

that, if the customer accepts cust accept(V), then the merchant should have sent merch respsend(V). This

requirement may be stated as follows:

accept(customer(P; [honest]);merchant(Q; [X]); cust accept(V); N?)

!3- send(merchant(Q; [X]); customer(P; [honest]);merch respsend(V); N?)

We also have a requirement that the customer and an honest merchant should have the same view of what

is going on. The merchant's view of the transaction is not captured by merch respsend(V), but rather

by merch resp(V 0), for some V 0. Thus, we must add the new requirement that, if the customer accepts

cust accept(V), then there exists a V 0 such that merch resp(V 0) � cust accept(V) and the merchant accepted

merch resp(V 0). This requirement may be stated as follows.

accept(customer(P; [honest]);merchant(Q; [honest]); cust accept(V); N?)

! 9V 0((cust accept(V) � merch resp(V 0)) ^

3- accept(merchant(Q; [honest]); customer(P; [honest]);merch resp(V0); N?)))

We now move to requirements concerning the gateway. We note that, in the case in which the merchant is

dishonest, the customer has no way of knowing that the merchant even communicated with the gateway, so

we can make no requirements in that case. However, in the case of an honest merchant, it is reasonable to

require that the customer and the gateway share the same view of the transaction, and that the gateway

actually communicated with the merchant.

We �rst consider the requirement that, if the customer accepts cust accept(V), then there is a V 0 such that

apg respsend (V 0) � cust accept(V) and the gateway sent apg respsend(V 0). As it turns out, we do not need

to state this requirement explicitly; it results from Lemma 1 and the following:

1. Our previously stated requirement that there exists a V 00 such that merch resp(V 00) � cust accept(V)

and the merchant accepts merch resp(V 00);

2. A requirement to be given in the Merchant Requirements section saying that, if the merchant accepts

merch resp(V 00), then there is a V 0 such that merch resp(V 00) � apg respsend(V 0), and the gateway

sent apg respsend (V 0), and;

3. The fact that support(apg respsend) � support(merch resp).

10

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

We do not have such a convenient subset relation for the requirement that the customer and the gateway

share the same view of the transaction. Thus, it is necessary to introduce an explicit requirement here: if the

customer accepts cust accept(V) from an honest merchant, then there is a V 0 such that cust accept(V) �

apg resp(V 0) and the gateway accepted apg resp(V 0). This may be stated formally as follows.

accept(customer(P; [honest]);merchant(Q; [honest]); cust accept(V); N?)

! 9V 0((cust accept(V) � apg resp(V 0) ^

3- accept(gateway(R; [honest]); customer(P; [honest]); apg resp(V0); N?))

Finally, there is a less obvious requirement that, if the customer receives noti�cation that he will receive

or has paid for goods, then these should be goods he already ordered. In other words, if the customer

accepts cust accept(V), then the customer should have sent some cust reqsend(V 0), where cust reqsend(V 0) �

cust accept(V). By Lemma 2, this can be simpli�ed to the requirement that, if the customer accepts

cust accept(V), then the customer sent cust reqsend(V). This is stated as follows.

accept(customer(P; [honest]);merchant(Q; [X]); cust accept(V); N)

!3- send(customer(P; [honest]);merchant(Q; [X]); cust reqsend(V); N)

Merchant Requirements The merchant's main requirement is that, if the merchant agrees to deliver

the goods to the customer, then it should have received a guarantee from the gateway that it will receive

its money. In other words, if the merchant accepts merch resp(V), then the gateway should have sent

apg respsend (V 0) for some V 0 such that apg respsend (V 0) � merch resp(V). Since support(apg respsend) �

support(merch resp), Lemma 2 allows us to replace this with the requirement that the gateway send

apg respsend (V). Likewise, if the merchant passes on a response to a customer, than it should have previously

requested that response from the gateway. This will prevent the merchant from agreeing to supply goods

that it never o�ered for sale. In other words, if the merchant accepts merch resp(V), then it should have

previously sent merch reqsend(V). Finally, we require that the merchant and the gateway have the same

picture of the transaction. This is captured by requiring that, if the merchant accepts merch resp(V), then

the gateway should have accepted apg respsend(V 0) for some V 0 such that apg resp(V 0) � merch resp(V).

These three requirements may be stated as follows.

accept(merchant(Q; [honest]); customer(P; [X]);merch resp(V); N?)

!3- send(gateway(R; [honest]); (customer (P; [X]);merchant(Q; [honest])); apg respsend(V); N?)

accept(merchant(Q; [honest]); customer(P; [X]);merch resp(V); N)

!3- send(merchant(Q; [honest]); gateway(R; [honest]);merch req(V); N)

accept(merchant(Q; [honest]); customer(P; [X]);merch resp(V); N?)

! 9V 0((apg resp(V 0) � merch resp(V)) ^

3- accept(gateway(R; [honest]); (customer(P; [X]);merchant(Q; [honest])); apg resp(V0); N?))

We now turn to requirements concerning the merchant's interaction with the customer. We �rst want to show

that the merchant accepts a transaction only if the customer has requested it, that is, the merchant accepts

11

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

merch resp(V) only if there exists a V 0 with merch resp(V) � cust reqsend(V 0) such that the customer sent

cust reqsend(V 0). We leave it as an exercise to the reader to show that this requirement is implied by Lemma 1

and the fact that support(cust reqsend) � support(apg resp), together with the requirements expressed in

this section and the Gateway Requirements section, and thus does not need to be stated explicitly.

We may also want to require that, when the merchant is aware that digital signatures are used by the

customer (merch req(V)[11] = signed), and the merchant accepts merch req(V), then the customer must

have sent cust reqsend(V 0), where merch req(V) � cust reqsend(V 0). This may be stated as follows.

(accept(merchant(Q; [honest]); customer(P; [X]);merch req(V); N) ^ (merch req(V)[11] = signed))

! 9V 0((cust req(V 0) � merch req(V)) ^

3- send(customer(P; [honest]);merchant(Q; [honest]); cust req(V0); N))

There is also an implicit requirement that the merchant be able to prove that the customer initiated the

transaction in the event of a later dispute. This is indeed the reason for allowing the gateway to send the

PAN to the merchant. However, since the protocol for verifying the merchant's claim is not explicitly de�ned

in SET 1.0, we do not include this as a formal requirement.

Gateway Requirements The gateway's job is to mediate between the customer and the merchant. To

do this, it must be able to determine that both the customer and the merchant have actually sent their

requests. Thus, the gateway will not accept apg resp(V) unless the merchant and the customer have al-

ready sent merch reqsend(V 0) and cust reqsend(V 00), respectively where merch reqsend(V 0) � apg resp(V)

and cust reqsend(V 00) � apg resp(V). Again, Lemma 2 and the fact that the supports of both merchant

and customer projections are subsets of support(apg resp) allows us to replace merch reqsend(V 0) with

merch reqsend(V) and cust reqsend(V 00) with cust reqsend(V). We do not make any requirement on the

order in which the merchant and customer requests are sent. This raises the possibility of a `psychic mer-

chant' who anticipates a customer's request and sends his request to the gateway before receiving it from

a customer. Although this is nonsensical, we don't consider it a security violation, so we don't attempt to

guard against it.

The formal version of this requirement is as follows:

accept(gateway(R; [honest]); (merchant(Q; [honest]); customer(P; [honest])); apg resp(V); N?)

!3- (send(customer(P; [X]); (customer(P; [X]);merchant(Q; [Y])); cust req(V); N?) ^

send(merchant(Q; [X]); (customer(P; [X]);merchant(Q; [Y]));merch req(V); N?))

In the case that the customer is honest, we also make the requirement that her view of the transaction

agrees with the view of the gateway, that is, that the customer previously accepted cust req(V 0), where

cust req(V 0) � apg resp(V). In this case, however, the fact that support(cust req) � support(apg resp),

together with the faithfulness requirements and the requirements given just above on the gateway's accepting

requests, allows us to use Lemma 1 to derive this requirement from the others. We again leave the proof of

this as an exercise to the reader.

Likewise, when the merchant is honest, we make the requirement that if the gateway accepts apg resp(V),

then the merchant previously accepted merch req(V 0), where merch req(V 0) � apg resp(V). The proof that

this requirement is derivable from the others is also left to the reader.

12

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

Requirements for customer, merchant, and gateway are represented diagrammatically in Figure 2.

Secrecy Requirements The SET protocol makes use of the PAN and the PANSecret to provide authen-

tication. Since the PAN is also used for authentication outside of the SET protocol, it is the responsibility

of the protocol to protect the PAN. As we have seen, if a misjudgment is made and the PAN is delivered to

a dishonest merchant, then it can be compromised. Thus we need to guarantee that, if the intruder learns

the PAN (from runs of the protocol), then this was done as a result of the gateway's sending the PAN to a

dishonest merchant. Similarly, the protocol should not reveal the PANSecret of an honest customer under

any circumstances. These requirements are speci�ed formally as follows.

learn(intruder ;�; pan(customer(P; [honest]); N?)

! 9V (V [4] = pan(customer(P; [honest]) ^

3- send(gateway(R; [honest]);merchant(Q; [dishonest]); apg respsend(V); N?))

:(learn(intruder ;�; pansecret(customer(P; [honest]); N?))

The SET protocol is also intended to protect the secrecy of the monetary values passes in the protocol: that

is, the purchase amount, the amount authorized by the gateway, and the amount captured by the gateway.

The secrecy protection is very weak: ratios of authorization amount to purchase amount and of capture

amount to purchase amount are sent in the clear. But we still need to guarantee that these data are not

revealed otherwise than by a direct attack on this weak method of encryption. This we can do by modeling

the ratio function in the Protocol Analyzer speci�cation, requiring that one element of the ratio is required

in order to reveal the other, and then requiring that the intruder could not have learned these data unless

the customer were involved in an interaction with a dishonest merchant. This will be done in two parts:

1. If the intruder learns the purchase amount of a transaction involving an honest customer, then that

customer must have initiated the transaction with a dishonest merchant.

2. If the intruder learns the authorization or capture amounts of a transaction involving an honest cus-

tomer, then that customer must have initiated a transaction cust reqsend(V), with a dishonest mer-

chant, Q, and then the gateway must have sent apg respsend(V 0) to Q, where cust reqsend(V) �

apg respsend(V 0).

The formal versions of these requirements are given below. We are not actually concerned with the intruder

learning purchase, authorization, or capture dollar amounts; we are concerned with her learning the asso-

ciation of these with a given transaction. However, there are di�culties in the representation and analysis

of that association itself. Therefore, as a quick solution, we assume that a purchase/authorization/capture

amount chosen by a principal at any time T is unique. While perhaps not reective of reality, the only

practical limitation this has for us is the inability to represent attacks depending on the identity of two

such amounts in di�erent transactions. We may seek a more elegant solution in the future. The require-

ment for the intruder learning the capture amount is virtually identical to the requirement for learning the

authorization amount, and so we omit it.

13

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

learn(intruder ;�; purchamt(customer(P; [honest]); T); N?)

! 9V (3- send(customer(P; [honest]);merchant(Q; [dishonest]); cust reqsend(V); N?) ^

V [6] = purchamt(customer(P; [honest]); T))

learn(intruder ;�; authamt(customer(P; [honest]); gateway(R; [honest]); T); N?)

! 9V (3- send(customer(P; [honest]);merchant(Q; [dishonest]); cust reqsend(V); N?) ^

9V 0(cust reqsend(V) � apg respsend(V 0) ^

3- send(gateway(R; [honest]);merchant(Q; [dishonest]); apg respsend(V0); N?) ^

V 0[8] = authamt(customer(P; [honest]); gateway(R; [honest]); T)))

5 Comparison With Other Work

As we mentioned at the beginning of this paper, most work on developing requirements for cryptographic

protocols has concentrated on secure agreement on atomic object such as keys. However, there has been

some work closely related to ours on developing requirements for agreement on more complex transactions.

In [2] Bolignano describes the following approach to specifying requirements for complex protocols such as

SET. According to Bolignano's de�nition, a requirement is divided into two parts: a regular language L,

and a �ltering function ffx on sequences of messages so that the requirement is satis�ed on sequence M if

and only if ffx(M) is in L. Bolignano shows how �ltering functions can be used to express requirements

on sequences of messages in a protocol in terms of conditions on individual components in the messages.

Thus, like us, he can require that di�erent components of di�erent messages in a sequence must agree in

order for a protocol to execute correctly. Although we have not attempted to verify this, we believe that

Bolignano's approach could be used to specify the requirements we have set out in this paper. Indeed, in

[2] he reports that he is applying this technique to the analysis of the SET protocol. We believe that the

advantage of our approach lies in the fact that the use of projections and the agreement relation allows us to

simplify greatly the expression of the requirements, and thus makes them easier to work with. The complex

part of requirements speci�cation for protocols such as SET appears to lie mostly in the de�nition of the

projections. Once this was done, the remaining portion of the requirements turned out to be not that much

more complex than requirements for protocols for secure agreement on atomic objects such as keys. It might

be interesting to see if a similar approach could be used to simplify the requirements in [2].

Another approach to formal analysis of complex payment protocols is given by Brackin [3]. He describes

the analysis of two large protocols for electronic commerce developed by CyberCash. These protocols are

similar to SET in their primary respects. Brackin uses an automated theorem prover based on HOL. He

speci�es the protocol in an extension of GNY [4], itself an extension of BAN [1]. Thus, protocol goals are

speci�ed in terms of the beliefs of the principals, e.g., that the gateway believes that the merchant has sent

a merch req . The analysis appears to be at a higher level of abstraction than either the present work or that

of Bolignano. It thus potentially assumes away some signi�cant features and possibly even vulnerabilities.

It is also in some ways not as abstract as the present work. For example, agreement on a transaction is

not represented at all; rather, agreement on individual �elds within the transaction is analyzed. However,

Brackin's analysis is able to highlight, e.g., some of the trust assumptions in the protocols and to provide

assurance against some common high level protocol vulnerabilities.

14

C. Meadows and P. Syverson, \A Formal Speci�cation of Requirements for Payment Transactions

in the SET Protocol", DRAFT for Preproceedings of Financial Cryptography (FC98), Feb. `98

6 Conclusions

We have presented a formal speci�cation of requirements for the payment portion of the SET protocol in

the language NPATRL. By introducing transaction vectors, projections thereon, and the vector agreement

relation we have been able to present requirements that are completely formal and capture much detail yet

are quite readable representations of intuitive goals. Understanding the goals of SET, even informally, has

previously been di�cult. Since we have been able to represent the SET requirements in NPATRL, they are

now amenable to analysis using the NRL Protocol Analyzer to evaluate. This is the focus of future work.

Acknowledgements

David Goldschlag took part in most of the early meetings when this work was taking shape. We thank him

for much helpful input given at that time. This work was supported by DARPA.

References

[1] M. Burrows, M. Abadi, and R. Needham, A Logic of Authentication, SRC Research Report 39,

Digital Systems Research Center, February 1989.

[2] D. Bolignano, \Towards the Formal Veri�cation of Electronic Commerce Protocols", Proceedings of

the 10th IEEE Computer Security Foundations Workshop, pp. 133{146, Rockport Massachusetts,

IEEE CS Press, June 1997.

[3] S. Brackin, \Automatic Formal Analyses of Two Large Commercial Protocols", DIMACS Workshop

on Design and Formal Veri�cation of Security Protocols , Rutgers New Jersey, September 1997.

(Paper available at http://dimacs.rutgers.edu/Workshops/Security/program2/brackin.html)

[4] L. Gong, R. Needham, and R. Yahalom, "Reasoning about Belief in Cryptographic Protocols",

Proceedings of the 1990 IEEE Computer Society Symposium on Research in Security and Privacy ,

pp. 234{248, IEEE Computer Society Press, Oakland California, May 1990.

[5] SET Secure Electronic Transaction Speci�cation, Version 1.0, May 1997. (Downloaded from

http://www.visa.com/set/)

[6] P. Syverson and C. Meadows, \A Logical Language for Specifying Cryptographic Protocol Require-

ments", Proceedings of the 1993 IEEE Computer Society Symposium on Research in Security and

Privacy, pp. 165{177, IEEE Computer Society Press, Oakland California, May 1993.

[7] P. Syverson and C. Meadows, \Formal Requirements for Key Distribution Protocols", Advances in

Cryptology | EUROCRYPT `94 , LNCS vol. 950, A. De Santis, ed., pp. 320{331, Springer-Verlag,

Perugia Italy, 1994.

[8] P. Syverson and C.Meadows, \A Formal Language for Cryptographic Protocol Requirements",

Designs, Codes, and Cryptography , vol. 7, nos. 1 and 2, pp. 27{59, January 1996.

15

